Creating a Self-Sustaining School Ecosystem with Blockchain

Abstract

The current school system is too structured, rigid, and inhibits creativity. The current school curriculum inadequately prepares the students to survive the fast-changing world of the 21st century. While schools need to comply with the national education policy to teach designated subjects, schools should include other programs that could help to resolve the aforementioned issue. Therefore, our school proposes building an ecosystem using blockchain technology where students can freely create and share their contents. We believe that the blockchain ecosystem will nurture young children in developing creative minds and entrepreneurial skills.

I have written this white paper for a hypothetical blockchain project. This blockchain project is to build a private blockchain ecosystem for an international school. 

First, we need to conduct a feasibility study before we start planning any blockchain project. Here, I am using a methodology called the CATWOE analysis. It can be applied to any new project.

CATWOE Analysis of  Building a Blockchain School

CATWOE is an acronym that stands for Customers – Actors – Transformation process – Worldview – Owners – Environmental constraints. It’s a simple analytical approach to find solutions to problems. The CATWOE Analysis makes it possible to identify problem areas, look at what an organization wants to achieve, and which solutions can influence the stakeholders. The analysis uses thought methodology from multiple perspectives. It is especially useful for an organization that wants to implement a new project that involves a drastic transformation process. The implementation of the blockchain technologies in a school curriculum qualifies for such transformation. Therefore, there is a need to understand the problems and try to find solutions before we proceed with the project implementation

C – Clients

They are the users and stakeholders of a system. In this case, they are the students, teachers, parents, the management staff, the education department, and others. They will benefit if the change is positive and the problems are solved. However, they may stand to lose or suffer if the change is negative and new problems are created. Therefore, we need to find out whether the blockchain technologies can solve current problems and bring positive changes in the school system. If the outcome could be negative or even damaging, we need to abort the project.

A-Actors

They are usually the employees within an organization, in this case, teachers and support staff. They are responsible for carrying out work and involved with the implementation of the blockchain system. Therefore, we need to conduct an inventory analysis to know their qualities, capabilities, and interests to get a clear picture of their impact on the organization. We may need to hire new employees or retrain the current ones to ensure competency with respect to blockchain implementation. We also need to conduct training for the employees.

T – Transformation Process

Transformation is the change that a system or process leads to. It’s the process in which input (including raw materials, man-hours, knowledge) is transformed by an organization into output (such as a final product or solution to a problem).

To implement the blockchain system, we need to know in advance what kinds of input requires and forecast what the end result (output) will be. Besides that,  we have to carefully consider the intermediate steps. In this case, the input is the blockchain technologies and the output could be a system that churns out an intelligent pool of young entrepreneurs that thrive on co-creating and co-sharing.

W – Worldview

Stakeholders often have different ideas and approaches to the same issue, with other conflicting interests. The goal of the CATWOE analysis is to make their different viewpoint explicit and try to achieve a methodology stand. In this project, we need to achieve consensus among the stakeholders that involve the students themselves, we don’t want to force the ideas on them. Besides that, some teachers might have fear in carrying out the transformation as they have to learn new technologies. Parents would be very concern about the implementation of the blockchain technologies because it will bring profound impacts on their children, either positively or negatively.

In addition, the government might want to regulate the project to ensure it complies with the national education policies and philosophies. On the other hand, business leaders may want to look for financial gains by sponsoring the project or they may refuse to support the project at all. Therefore, there is an urgent need to conduct surveys and research to figure out how to secure agreement from most stakeholders to implement the project.

O – Owners

This usually refers to the owner, entrepreneur or investor of an organisation, who wants to make changes and who decides whether a project should start or stop. As decision makers, they have the highest authorities.  Commitment and support from the aforementioned parties are important to ensure successful implementation of the blockchain project and also long term sustainability of the project.

E – Environmental Constraints

This is the actual environmental elements that may influence the organization and can limit or restrict the implementation of the blockchain technologies in the school system. Examples include political influence, ethical boundaries, regulations from the government, financial constraints and social factors. There is a need to work closely to overcome the constraints via negotiations and other means with the regulators and other parties

After conducted the CATWOE analysis, I have identified the following problems where most schools are facing.

Problems

  • The Current school system is too structured and too rigid, inhibiting creativity
  • The Curriculum methodology too centered on academics and examinations
  • Teacher-centered, lack of peer learning
  • The Administration is centralized and autocratic
  • Does not prepare children for the future
  • Lack of participation from stakeholders

The proposed solution

  • Create a self-perpetuating and self-sustaining ecosystem where students can create and share digital content. It can also include tangible things like arts and craft, scientific inventions, or intangible things like music, song, new ideas, games, and so on. These tangible assets can be digitized and shared among the students.
  • Not only they can share digital content, but they can also buy and sell them. It is akin to an autonomous economic system where students can self-fund their projects by trading their digital assets.
  • The latest technology that can power this system is blockchain, a subset of decentralized ledger technologies.
  • The ecosystem should be enlarged to include the actors of the system – the teachers, coaches, supporting staff and the administrators.
  • The ecosystem must also be connected to stakeholders, including the business owners (who can provide financial support and sponsorship), the government (who may want to regulate the activities in the system), parents (who are concerned with their children development), etc.
  • The ecosystem can be extended to include students from around the world in the future.

† The Architecture

  • Create a permissioned private blockchain platform for the students. The students can interact freely in their own close-loop decentralized and distributed ecosystem.
  • Content or assets can be created and tokenized and shared among the students. They can trade their assets using the tokens, creating a token economic system.
  • Develop APIs so that the stakeholders can interact with the blockchain. Administrators and teachers should be allowed to monitor and delete certain contents that are inappropriate like pornographic materials etc via the API. On the other hand, parents can monitor their children progress but may not be allowed to delete the contents or add comments. In addition, business owners and investors can monitor the progress of the project and provide support and advice if necessary (for example if the system crashed or stalled). In addition, regulators might want to monitor the blockchain for compliance.
  • Proposed using Ethereum Proof of Authority(PoA) protocol known as Clique. The benefits of using PoA are as follows:
    • Saves electricity power
    • Eliminates the need to invest into large numbers of ‘Miners’ servers
    • Increase the transaction speed tremendous compared to Proof-of-Work(PoW)
    • Better security since only members can access the network
  • The ecosystem can be hosted on a cloud server like AWS and Microsoft Azure but you can set up your own servers.  The conceptual model is illustrated in the figure below:

The Legal Framework

Obviously transforming a school into a blockchain school needs to obtain approval from the Ministry of Education. It has to comply with national education policies. Therefore, we need to design the blockchain platform as a new approach in teaching and learning, keeping content within the requirements of the curriculum imposed by the MOE.

**You may use my ideas to write a paper if you are embarking on a similar project, but prior consent from me is necessary.

Hyperledger- A Brief Introduction

Background

In previous articles, we have learned about the bitcoin blockchain, the flagship of cryptocurrency.  Subsequently, we learned about Ethereum that features smart contracts on top of its cryptocurrency Ether. Smart contracts allow developers to create decentralized applications (dapps) on the Ethereum ecosystem.

Both bitcoin and Ethereum are amazing blockchain platforms. However,  both are facing some very challenging issues, one of them is scalability.  According to Wikipedia,  the transaction processing capacity of the bitcoin network is limited by the average block creation time of 10 minutes and the block size limit.  The transaction rate for bitcoin is between 3.3 and 7 transactions per second.

Ethereum does not fare better, its transaction rate is 15 transactions per second. Comparatively, VISA’s transaction rate is 45,000 transactions per second. Therefore, both platforms fall short in developing practical enterprise applications at the moment.

To overcome the limitations of the blockchain technologies for enterprise usage, Hyperledger was created with the vision to provide viable blockchain solutions for industries and businesses. Hyperledger is an open source effort created to advance cross-industry blockchain technologies hosted by The Linux Foundation.

The Mission of Hyperledger

The philosophy of Hyperledger is

“Only an Open Source, collaborative software development approach can ensure the transparency, longevity, interoperability, and support required to bring blockchain technologies forward to mainstream commercial adoption.” –hyperledger.org


Indeed, the Hyperledger project has been a collaboration of players from various industries and organizations in technology, finance, banking, supply chain management, manufacturing, IoT and more. Since its inception in December 2015, it has managed to enlist many prominent members that include IBM, Intel, NEC, Cisco, J.P Morgan, AMN AMRO, ANZ Bank, Wells Fargo, Accenture, SAP and more. For the complete list, please refer to Wikipedia.

The mission of Hyperledger comprises some ambitious goals, as  illustrated in the following figure,

Adapted from Linux foundation

The Hyperledger Greenhouse

Hyperledger itself is not a platform, but it is an umbrella body that incubates and promotes a range of business blockchain technologies. The technologies include distributed ledger frameworks, smart contract engines, client libraries, graphical interfaces, utility libraries, and sample applications. The umbrella strategy was able to accelerate innovation of DLT components by encouraging the re-use of common building blocks and components(hyperledger.org, 2018).

The Hyperlegder projects known as The Hyperledger Greenhouse consists of five projects and five tools, as shown in the figure below:

Adapted from hyperledger.org

Each of the frameworks operates differently but they also allow certain interoperability among themselves. Hyperledger frameworks are generally permissioned (private)blockchains. It means that the parties need authentication and authorization to participate on the blockchain networks.

I will try to explain some of the frameworks and tools in simple language in a series of future articles. I am not an expert on Hyperledger but I have a decent understanding of the technologies via theories and practice. Recently I have enrolled in a Hyperledger course hosted by the Linux Foundation and managed to obtain a certificate of achievement. I am willing to share my knowledge with you.

Certificate  Link:  https://courses.edx.org/certificates/893fe1d735404398b56460873940ca5d

Open Source and Open Governance

The success of Hyperledger is based on the concepts of open source and open governance.  The concept of open source means that an open source software is a software that is made freely available and may be redistributed and modified. In other words, anyone has the ability to view the code, use the code, copy the code, modify the code, and, depending on the open source license, contribute back changes. (hyperledger.org, 2018)

On the other hand, open governance means that technical decisions for an open source project are made by a group of community-elected developers voted in from a pool of active participants. These decisions include things such as which features to add, how, and when to add them.  (hyperledger.org, 2018).  Hyperledger has formed a  Technical Steering Committee(TSC) to implement open governance pertaining to the Hyperledger projects. You can read about Hyperledger’s open governance by following this link

https://www.hyperledger.org/blog/2017/09/06/abcs-of-open-governance

That’s all for now. I will discuss why Hyperledger blockchain frameworks are better designed for enterprises than the public permissionless blockchains in coming articles.

Meanwhile, you may want to register for the Hyperledger Global Forum in Basel, Switzerland in December. I have registered but not sure of going yet as there is an issue with the credit card payment. By the way, there are no free tickets. It is a four days workshop with hands-on practices.